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In most modeling there is a trade-off between model detail and model scope. Because demand matrices grow 
with the square of the number of zones, there are natural limits to how large or how detailed models can 
become. This is true even for activity based models, where high levels of spatial details in household are often 
married to more aggregate skim and demand matrices. This paper presents a new modeling approach, slice 
simulation modeling, that overcomes these constraints. It does this through the use of Monte Carlo analysis, 
with all components of choice integrated into a single utility function with arbitrary selection of random 
variables. This utility function includes destination choice through an explicit inclusion of the utility of travel 
to a given attraction; mode choice through a full set of model costs; and congested route choice with transit 
crowding and junction delays. 

This paper describes the motivation for the model, and its theoretical justification. It explores the variables 
that make up the utility function and discusses how the complex utility maximization process can be made 
algorithmically tractable. It also examines some of the complexities of the model, such as the treatment of 
time and directionality; the form of the attraction utility model; and methods for dealing with congestion. 
Finally, the paper presents some recent applications of the model, with detailed metropolitan models of Los 
Angeles and London; a statewide model for California; and national models of Australia and Great Britain. 

Introduction 

Background  

The history of modeling has been dominated by aggregate, trip based approaches, typified 
by the classic four-step model. To manage the complexity of traffic congestion and 
intersections there has also been a well established history of modeling with more realistic 
treatment of traffic in mesoscopic models. In the last decade there has been a shift away 
from these approaches, with growing emphasis on micro-simulation and activity based 
approaches. All of these models have different areas of emphasis, and different strengths 
and weaknesses. They can also be characterized by the different ways in which they deal 
with variations in behavior; aggregation of demand; and convergence of travel costs and 
travel choices. This paper describes a new class of model - the slice simulation model. 

The new approach is based on an integrated random utility structure, where all 
components of travel are included into a single utility function. Unlike many models which 
focus primarily on cost components, the utility function includes an explicit parameter for 
the utility of travel to each possible attractor. The inclusion of an attraction utility 
component makes it possible for destination choice to be assessed using path building 
algorithms, along with mode choice and route choice. The final model uses Monte Carlo 



sampling (see MacKay 1998) to determine estimated demand, and assesses congestion 
through a large number of loadings, using the Method of Successive Averages (MSA). 

Outline of principle findings 

A new approach to modeling is presented in this paper - the Segmented Stochastic Slice 
Simulation (4S) model. 

It is named for the following features: 

• Segmented: Uses a comprehensive breakdown of different travel markets, and allows 
all behavioral parameters to vary by market segment (value of time, tolls, destination 
utilities etc.) 

• Stochastic: Uses Monte Carlo methods to draw values from probability distributions. 
Every parameter can be a random variable 

• Slice: Takes very efficient slices (samples) of the travel market across the whole model 
area and through the distributions 

• Simulation: Uses a traveler/vehicle state-machine with very flexible transition rules to 
effectively simulate all aspects of travel choice 

This model is based on an explicit formulation of a random utility model, without the 
simplifications inherent in the logit equation. It does not use zones or matrices, but instead 
allows all travel to occur from node to node. It avoids the problems of aggregation inherent 
in most strategic models, and allows very detailed networks to be used; the usual approach 
is to include all roads and full timetabled public transport. It also allows for very large 
models, covering entire metropolitan areas, states and countries. 

It has many compelling advantages over existing approaches: 

• It has an elegant, theoretically sound basis that allows for realistic modeling of a very 
wide range of issues. This includes active transport, mode choice, toll modeling, 
behavior change, induced demand and time-of-day analysis. 

• Models can be prepared with much less effort and arbitrary coding - by eliminating 
zones, centroids, and centroid connectors the manual effort in putting networks 
together is vastly reduced. Also these aspects (zones, centroids and centroid 
connectors) are somewhat arbitrary abstractions that make the model highly 
dependent on manual inputs and individual assumptions. 

• It is very computationally efficient - by focusing all of the computational effort on tasks 
that are likely to contribute to the final outcome, and by having a single iterative 
structure (rather than traditional models' use of a whole range of separate iterations 
for convergence) complex models can be run with practical run times. 

• Its simple core allows it to be easily extended - the current model includes intersection 
delays; a detailed fuel use model; and multi-commodity, multi-vehicle class freight. 



As an example of the efficiency of the approach, the author has developed models of large 
cities (including London and Los Angeles) with every road, transit and active transport link 
that can run in hours. Larger regional and national models can also be used with 
reasonable run times; models of California, Great Britain and Australia have all been 
implemented to run overnight. With some simplification of the network (removing most 
local residential streets) a model of the whole of the United States should also possible as 
an overnight run.  

To understand the detail included in these networks, it is instructive to compare it with a 
number of large US models. 

• New York Best Practices Model: 52,794 one way road links, 3,000 transit routes, 
73,000 transit stops 

• California statewide travel demand model: 235,000 one way road links, 86,000 nodes 

• 4S model for Australia: 3.5m one way road links, 1.5m nodes 

The new Segmented Stochastic Slice Simulation (4S) model has many of the benefits of 
mesoscopic models, in that the simulation component allows for much more realistic 
treatment of travel costs, including intersection delays and transit crowding. Consistent 
with this is a much finer representation of the land use and transport systems- the model is 
usually run with all roads; timetable-based transit; full detail on active transport; and point 
based land use/demographics. By moving away from traffic analysis zones (TAZ) and 
allowing all travel to be point-to-point, the new model increases the realism of modeling 
multi-modal travel, and reduces the effort involved in creating new models. 

The new approach also brings in a more flexible utility formulation, allowing it to consider 
a wide variety of changes to travel behavior and the interaction between demographic 
variables and travel choice; this brings in some of the benefits of activity modeling. But in 
its application and data input requirements it is closer to traditional four step models. 

Description of the framework of the paper 

This paper will describe the approach used by the 4S model; the theory behind it; and 
discuss the ways in which it has been applied over the last 7 years. 

The motivation for a new approach 

Traditional approaches to modeling (the four step model) 

The four step model considers travel through a series of distinct (but linked) choices. These 
were originally seen as separate steps, but are now commonly viewed as a hierarchy, with 
decisions at the higher level based on the probability-weighted aggregate of lower level 
decisions. In order to make the problem tractable, demand is spatially aggregated to traffic 
zones, and the road and transit networks are generally simplified. The core description of 
travel is the matrix, which records all trips between each origin and destination zone; the 



key input that determines people's travel choices is the skim matrix, which records the 
travel costs (or times) between each pair of zones. 

Lack of detail 

The difficulties with this model structure comes from these two simplifications - matrices 
and skims. The problem with demand matrices is that they are inevitably too coarse, and 
necessarily exclude many of the details of local demand decisions. These local demand 
issues have impacts on a significant portion of car travel; the "last mile" of transit demand; 
and almost all walking and cycle demand. Local roads are usually excluded from four step 
models, and intra-zonal demand is not well modeled and usually discarded. The obvious 
response is to increase the number of zones, but this quickly makes the model 
cumbersome, with long run times and high storage requirements. This is exacerbated as 
the study area increases. Most large metropolitan models or statewide models have very 
large zones; national and regional models have such large zones that almost all travel 
occurs intrazonally. 

The other response to the problem of large zones has been to reduce the extent of the 
model, so that high levels of spatial detail can be used. The desire to improve the realism in 
treatment of roads and intersections led to the development of meso-scopic models, and 
then micro-simulation models. These models generally include demand matrices with 
much more detail in their origins and destinations, often down to individual car parks and 
offices. They also include a comprehensive road network, with all roads, and detailed 
information on intersections and lane allocation. However these models are focused on 
improvements to the assignment stage of the model, and often rely on inputs from a 
strategic, aggregate model. They also have scalability issues, and generally can only be 
applied to smaller areas within a city. 

Lack of variability 

Skim matrices have their own problems. It has long been recognized that travelers consider 
more than just travel time when making their decisions; they consider other direct costs 
(tolls, parking, transit fares, vehicle operating costs) and they value time differently for 
different activities. For example, most people would rather spend 10 minutes driving a car 
than 10 minutes walking; furthermore they would rather spend 10 minutes driving 
through uncongested streets than driving in traffic. The usual approach to this is to 
produce generalized cost skims, where all cost elements are combined to give an overall, 
aggregate cost. But different people value things differently - some people enjoy walking 
and dislike cars; some people value their time very highly and will pay high prices to save 
it, whereas others will be much more sensitive to costs. The differences can be in more than 
just perceived values - different vehicles can have different speed profiles, different 
operating costs, and different sensitivities to grade and congestion; transit fares are usually 
lower for students; and many workers have their parking paid for by their employer. 

It is possible to encompass some of these variations through careful segmentation - 
producing different skims for different vehicle types, and perhaps for workers as opposed 
to students. However skim segmentation increases model run times, and furthermore it 



ignores the variations that exist within each segment. The variability is inserted back into 
the model through techniques such as the logit mode choice or toll choice models, but these 
can only operate on the aggregate results from the skims. The fact that different people will 
choose to navigate through the network differently is ignored - the skim and assignment 
only reflects the decision and cost of the average traveler. 

Activity based models 

More recently there has been a movement towards an activity-based approach. This 
approach aims to improve the treatment of travel decisions within households by explicitly 
looking at time-allocation constraints, and interaction between household members. 
Activity based models (ABM) generally treat households and individuals at a disaggregate 
level, and produce lists of trips and tours made by synthetic travelers. However they rely 
on network skims done at the aggregate TAZ level, and the final estimates of traffic 
volumes and transit loadings are still generally converted into matrices that are then 
assigned to the network using traditional approaches (although dynamic assignment 
techniques are starting to be used). 

ABM's also have difficulty in ensuring convergence across the choice structures - when run 
in forecast mode they require skims and accessibility measures to be determined prior to 
running the household choice models, but the level of network congestion is a result of the 
aggregate decisions made by travelers. This means that whole process must be iterated to 
convergence, significantly increasing already lengthy run times. 

So although they represent an improvement over the four step model, ABM can still have 
difficulty capturing the full detail of the network and land use, and are cumbersome if 
extended to large areas. 

Treatment of variability 

Many of the differences between different models come down to how they deal with 
variability of travel behavior. The traditional approach uses aggregate proportions derived 
from analytic equations. These proportions were originally developed empirically without 
a clear theoretical basis; an example of this is diversion curves. Sometimes they were done 
by analogy with field equations, such as the gravity model. The development of discrete 
choice models gave a theoretical basis to the proportions; the random utility model (RUM) 
identified the proportion as the probability that a given choice would have a higher utility 
than any other. However the preference for an analytical approach necessitated the use of 
very simple utility formulations, at least in their treatment of variability. The most widely 
used approach for managing variation is the multinomial logit, which allows for variation 
only in a single additive term (the error term) and does not allow for variation in taste, or 
any complex correlation in variability (other than that allowed through nested discrete 
choices). 

So the traditional approach is to enumerate all alternatives; find the associated 
costs/utility; and then determine the proportion selecting each alternative using an 
equation. In most cases the spatial aspect of the alternatives are defined by a zoning system 



and the full enumeration of all possible alternatives is given by the skim matrix. In four-
step models the demand is then allocated using the proportions; the final demand matrix 
may have many cells with tiny fractions on a trip, but these are aggregated using 
assignment algorithms to give final demand on the network. The fractional trips can not be 
eliminated since they contribute to the total. 

In activity based models and microsimulation models the proportions are treated as 
probabilities, and Monte Carlo techniques are used to turn them into discrete events. 
Usually a uniform probability distribution is used, and the probability that any particular 
decision will be "realized" in the simulation is the fractional proportion. The final model 
will have a list of complete choice events (which may be individual vehicles in a 
microsimulation model, or tour and trip lists in an ABM (Castiglione, Bradley, and Gliebe 
(2015) Pg85)). 

Because the ABMs use logit curves and log-sums, they still require full enumeration of all 
alternatives, necessitating the use of aggregation of cost data by zone. Travel modes are 
also simplified, for example the CT-RAMP models typically use only 5 modes (SOV, HOV, 
Walk to Transit, Drive to Transit, Non-Motorized) (see Parsons Brinckerhoff in association 
with Arizona State University 2010 Pg 24). 

The motivation behind the 4S model can be understood by considering the way in which a 
utility maximizing model can be applied in a Monte Carlo framework. In any RUM only the 
highest utility alternative is selected; most models are focused on working out the 
probability of this occurring. In most formulations, the calculation of the probability that 
any alternative is the highest requires the determination of the full utility of all other 
alternatives. However if the utilities are sampled using a Monte Carlo technique then only 
the highest utility must be explored in detail - lower utilities only need to be considered up 
until the point that they can be rejected. In practice, this can be done using path building 
techniques, which implicitly find only the best path. The 4S model works by converting the 
full travel choice to a complex path build through a multi-dimensional network, as 
described below. 

Methodology - The 4S Model 

Flexible random utility 

At heart the model adopts the same Random Utility Maximization (RUM) theory that 
underlies most discrete choice models. It assumes that when choosing between 
alternatives, each individual makes an assessment of the utility of each option and chooses 
the one that will yield the greatest utility. All of the utility values are random variables (due 
to variation in people's behavior, modelers' ignorance and changing circumstance) so 
preferred choice will vary, leading to choice probabilities. 

The standard formulation of RUM divides the utility into a systematic part and a random 
part. The 4S Model does not make this distinction, but instead builds the utility measures 
out of random variables. 



In order to work as a travel choice model, the assumption is made that the utility of a 
particular travel choice is composed of two parts - the utility of the attractor and the 
disutilities of traveling. 

𝑈𝑎,𝑚,𝑟,𝑛 = 𝑈𝑎,𝑛 − 𝛽𝑛 𝐶𝑎,𝑚,𝑟,𝑛 

where 𝑈𝑎,𝑛 is the intrinsic utility of the attractor a to the individual n, and 𝐶𝑎,𝑚,𝑟,𝑛 is the 

vector of cost components of traveling to attractor a by mode m on route r, 𝛽𝑛 is a vector of 
random taste coefficients for individual n. The coefficients are random variables that vary 
over individual decision makers and are distributed with a density function that is 
described by a distribution (such as normal, uniform, triangular, gamma, log-normal) and 
parameters (such as mean and standard deviation) of 𝛽's across the market segment under 
consideration. 

Thus the trips between a particular production location p and an attractor i, by a particular 
mode m and route r for a market segment s is dependent on the size of the market segment 
at the production 𝑆𝑝,𝑠 and the probability that the attractor, mode, route combination is 

optimal. 

𝑇𝑝,𝑎,𝑚,𝑟,𝑠 = 𝑆𝑝,𝑠 𝑝(𝑈𝑖,𝑚,𝑟,𝑠 > 𝑈𝑗,𝑚,𝑟,𝑠,  ∀𝑗 ∈ 𝐴𝑠,  𝑗 ≠ 𝑖) 

Where 𝐴𝑠 is the set of all possible attractors for market segment s. 

The actual variables to be included in the utility formulation can be easily changed, and can 
include any elements of link, mode, market segment or route. Importantly it can also 
include any derived variables, including aggregate demand by time period; opposing flows 
at intersections; remaining capacity of transit services at loading; crowding of transit 
services; or remaining parking supply. The variables can all be estimated throughout the 
process, using MSA to produce successively reliable estimates. Speed of convergence for 
many of these elements may be slower than, for example, a classic equilibrium approach. 
But as shown below, the solution strategy requires a very large number of iterations/slices 
for reliable Monte Carlo exploration of the random variables; these are generally sufficient 
to allow for MSA convergence. 

A typical implementation of a slice simulation model would contain the following 
components in the utility formulation. 

• Attraction Utility - the utility associated with traveling to a given attraction 

• Value of time spent traveling - influenced by the following components 

– Hourly income - usually a log normal distribution based on person type 

– Wage rate multiplier - varies by market segment 

– Value of time multiplier - varies by mode and activity (in vehicle, waiting, 
interchange, wait at first stop) 

– Speed of travel - based on network and market segment characteristics 
(including walking speed, cycling speed, intersection delays) 

– End of trip costs - varies by mode, trip length, and network characteristics 
(such as end of trip facilities for cyclists, or parking search time for drivers) 



• Operating costs 

– Fuel costs - based on market segment/vehicle type, trip length, network 
characteristics (such as grade, road surface type) 

– Other vehicle operating costs 

• Direct costs 

– Tolls 

– Fares 

– Flagfall cost, per distance cost, per time cost (for taxis and shared autonomous 
vehicles) 

– Parking charges 

– Road pricing 

In addition, the model uses distributions of preferred arrival time/departure time to 
determine when in the day travel occurs (see section below on Continuous Time). 

Solution strategies 

It would seem that producing an estimate of 𝑝 would require the enumeration of every 
attraction, mode and route combination for each production area. In fact the traditional 
combined model attempts to do this, but by reducing the problem complexity using the 
following simplifications: 

• Aggregate production areas and attraction areas into zones 

• Aggregate modes into simple sets (e.g. combine bus, rail and their access modes into a 
single mode PT) 

• Consider only the shortest route in each mode 

• Simplify the utility formulation (through assumptions such as independent and 
identically distributed (IID) error terms), to give an algebraic solution, such as 
multinomial logit 

If all of these simplifications are adopted, the resulting model would look very similar to 
the traditional four step model with nested logit for route choice, mode choice and 
destination choice. Use of a mixed logit model would allow more complex specification of 
the utility structure, but would typically still require the full enumeration of costs for all 
modes, routes and attractors. 

The full enumeration of all options is the sticking point - for the traditional discrete choice 
model, probabilities can only be established by calculating the non-random costs for all 
alternatives, leading to traditional cost skim matrices by mode. The full enumeration is 
infeasible for routes, so traditional models generally work with deterministic route costs 
and calculate a single shortest path (for each mode and origin-destination pair). 

Many of the newer discrete choice models (such as mixed logit) recognize that closed form 
solutions to the maximized utility probability are impossible without severe constraints on 
the utility specification, so incorporate a stochastic sampling procedure to estimate the 



probabilities. The 4S Model embraces this stochastic sampling, and does away with full 
enumeration of alternatives. 

Nonetheless, the problem space inherent in the utility formulation seems too large to 
effectively sample. Fortunately it can be conceptually simplified without loss of generality. 
First, the distinction between mode and route is artificial. In reality mode is an abstraction, 
and travelers simply choose a route. There are still likely to be mode-related preferences 
that influence the correlation between the disutilities of different routes, but since the 
model makes no assumptions about the form of the random variables making up the 
disutilities this can be easily handled. 

The second simplification comes by recognizing that the attractor can also be considered 
part of the route - a travel decision can be seen as a route to fulfillment of a particular 
desire, and that route can pass through a range of possible destinations, each one giving a 
different boost to utility. 

So the choice problem becomes to find the route through the full choice space (which 
incorporates destination and mode) that maximizes net utility. 

Maximum utility path building 

Fortunately this problem can be solved efficiently, given a Monte Carlo draw for each of the 
random variables. The solution is a modified version of the standard shortest path 
algorithm, but rather than minimizing costs the algorithm must find the maximum utility 
path. 

The problem may be formulated as follows. Consider a standard transport network with 
links and nodes; with disutilities (negative valued costs) on each link. Some (or all) of the 
nodes represent productions - these are the locations where the individuals making the 
travel choice are located. There are also a number of locations in the network that connect 
to attractors for the market segment that is being examined. Connect each of these 
attractors to a single meta-attractor, using a shadow link with a positive utility. A modified 
Dijkstra algorithm can then be used to build paths from the single meta-attractor back to all 
production nodes. The algorithm must always start at the attractor, and build back towards 
the production nodes, and the greedy algorithm must always choose the next option that 
maximizes net utility. This algorithm can be extended to multiple modes, allowing for 
arbitrarily complex multi-modal trips. 

 



 

FIGURE 1: Examples showing four slices volumes 

Figure 1 shows the algorithm in action. In each of the four sections of the plot a single slice 
result can be seen for the same section of network; the line widths show the allocated 
demand, and the colors show the net utility of the choice at that location. The utilities are 
highest at the most desirable attractor; as paths build out from this point the utilities drop, 
but are still higher than those that can be obtained at any other attractor. Eventually the 
net utility values are low enough that another different attractor becomes viable; links that 
lead to it will now be added to the set of viable links for consideration in the path building 
algorithm. At each point in the process, the next highest utility link will be considered, and 
all links leading to it will be explored. The algorithm can be visualized as a series of 
expanding catchments around attractors; at the watersheds (or dividing points between 
catchments) the net utilities will be approximately equal. 

An important point to be noted in this algorithm - as soon as a production location is 
reached, the process is sure that the attractor and route to that attractor are the best 



alternative for that production location. It is not possible that any better route or 
destination could be found, since the process always considers the highest utility option 
(an no path can have increasing utility). Thus as soon as the path has been found it can 
have demand assigned to it. This is a key efficiency improvement of this algorithm 
compared with a traditional skim/assignment process, where paths must be determined 
twice. 

Continuous time 

Each slice of the 4S model is based on finding the optimal route and attractor for each 
production node, and it may be seen as a simulation of travel through the network for that 
slice. Thus it is possible to incorporate other aspects of individual simulation, such as the 
accurate treatment of time. 

This can be done quite easily by including a random distribution of preferred 
arrival/departure time and then keeping track of time throughout the path build. For the 
trip based model, separate paths are built for production to attraction trips and for the 
reverse, but all paths are built out from the attractor. Thus the seeding of the simulation 
time must always be given from the perspective of the attractor. The consequence of this is 
that the forward P-A trips are specified in terms of preferred arrival time, and the reverse 
A-P trips are specified in terms of departure time. Thus the model assumes that the time 
constraints are always specified at the attraction end; work travelers are assumed to have 
to arrive at work at a particular time and then leave work at a particular time. The times at 
the production end (leaving for work in the morning, or returning from work in the 
afternoon) emerge from the model and depend on the time spent traveling through the 
network. 

The treatment of time in this way allows the model to do a number of things much more 
effectively than traditional models. In particular, it can easily incorporate time-based 
network elements such as 

• Scheduled public transport 

• Timetabled vehicular ferries 

• Time dependent tolls and parking costs 

• Peak hour clearways 

• Off peak on-road parking 

• Different availability times for attractors (e.g. shopping center opening hours) 

Directionality 

The current implementations of the 4S model are trip based - this is a simple approach and 
can be solved efficiently. It is possible to structure a tour based approach using similar 
techniques, but the path building algorithm is more complex and is anticipated to have 
slower run times. This is an area of ongoing research by the author. 

In the trip based formulation, both directions of trips need to be considered - from 
production to attraction (P2A), and from attraction to production (A2P). However, as in a 



traditional destination choice model, the fundamental choice is always production to 
attraction, with attributes at the attractor determining its likely demand. In the maximum 
utility path building process, this means that paths must always be built from attractions 
back towards productions, with each desirable attractor forming a catchment zone of 
associated productions. 

In order for both directions of travel (P2A and A2P) to be modeled, the algorithm must 
switch the directionality of the path building process. When modeling P2A trips, paths are 
built in reverse, from attractions to productions going back in time. In this case the time at 
the attraction is a preferred arrival time, and the model works back to when the trips 
would need to leave the production to arrive at the attraction at the nominated time. When 
modeling A2P trips, the paths are built in the forward direction, going forward in time. In 
this case the time at the attraction is the preferred departure time, and the model works 
out when the trip will arrive back at the production. 

Attraction utility 

In order for destination choice to be included in the choice set, the utility of each attraction 
point is explicitly included in the 4S model. Since this utility is usually implicit in 
destination choice models, there is no consensus on what form the attraction utility 
distribution should take. From the form of a classic gravity model, one would expect that 
the average utility should be logarithmic with respect to size. This is because in a classic 
model the number of trips to a particular attraction increases linearly with the size of the 
attractor - under a logit destination choice this equates to: 

𝑇𝑖,𝑗 ∝ 𝐴𝑗𝑒
−𝐶𝑖,𝑗  

𝑇𝑖,𝑗 ∝ 𝑒𝑙𝑛(𝐴𝑗)−𝐶𝑖,𝑗  

There are also some other desirable properties of an attraction utility function. It should be 
fat-tailed, such that the probability of a very high utility is not negligible - this ensures that 
long distance trips are able to sometimes occur. The requirement for a fat tailed 
distribution eliminates a normally distributed utility. 

The utility function should also be invariant under different compositions - if a single 
attractor is decomposed into two attractors at the same location, each with half the size of 
the original, then the aggregate demand to the two new attractors should be equal to the 
original demand. By ensuring this property, the model can be easily aggregated as required 
without changing destination choice parameters. 

A range of potential formulations could be found to align with these properties. The one 
that has been adopted is based on the idea that an attractor provides opportunities to 
satisfy some desire, but that desire could potentially be satisfied even at a small location. 
For example, if someone is shopping for clothes, they might find exactly what they want at 
a small, isolated boutique store. But the bigger the store, the more likely that they will find 
what they want. The basic utility distribution is unchanged, but the bigger store simply 
provides more opportunities to obtain it. 



For maximum flexibility, the basic attraction utility is modeled as a gamma distribution - 
this is a fat tailed distribution defined by two parameters; shape and scale. These 
parameters vary by travel market, along with a scale factor. The scale factor is used to 
convert the destination size into a number of discrete opportunities. In the retail example, 
it might be set to 5, such that each 5 jobs at the destination provides one draw from the 
basic utility function. If there are 20 retail jobs at the destination, then the model will take 4 
draws from the gamma distribution and then use the highest one. 

An examination of the performance of this approach shows that in the limit the average 
utility increases with the log of the size, as desired. It also trivially satisfies the composition 
requirement, since a single location divided into two will still involve the same number of 
draws as the original, with the expectation of attracting the same number of trips. 

Congestion 

The key element that all equilibrium processes have in common is some iterative loading of 
demands onto links, and some updating of cost based on the loaded volumes. These range 
from simple incremental loading, through to the very popular Frank-Wolfe algorithm 
(FWA), and other uses of the Method of Successive Averages (MSA) and the Method of 
Successive Weighted Averages (MSWA). The key difference between these approaches is 
their efficiency at converging on the equilibrium solution. 

Within the 4S model, the efficiency of convergence does not matter as much as it does in 
traditional models; the model can assess route choice issues (including congestion) at the 
same time as determining travel choice. The loops needed for valid sampling of the 
probability distributions mean that there are many more convergence loops than is 
typically performed in traditional models (usually over 1000). 

Furthermore, there is no need to perform additional convergence loops for other levels of 
equilibrium; most FSM and ABM require a converged equilibrium assignment to be 
performed multiple times to get convergence between the congested skims that are an 
input to the demand estimation, and the resulting assigned volumes. The simultaneous 
choice structure of the 4S models makes this unnecessary; a single loop can be used to gain 
convergence between all aspects the model. This includes congestion on public transport; 
utility-based double constraining factors; parking supply; and crowding at destinations. 

The use of MSA, and the very high number of convergence loops, relaxes the monotonic 
constraint that usually applies to costs under the FWA. This allows the 4S model to 
incorporate elements of mesoscopic models, including opposing flow delay calculations at 
intersections, and queuing back of demand. It can also address transit congestion; double 
constraining factors; parking supply; and crowding at destinations. 

Thorough market segmentation 

Most models maintain segmentation through some processes, but aggregate at some point 
before assignment. Thus traffic volumes on roads are usually disaggregated only by vehicle 
type. In contrast, the 4S model maintains full segmentation throughout the model. This 
makes it possible to find the breakdown of traffic on each road by purpose, for example. 



With suitable segmentation it allows transit demand on each line to be listed by income 
category, or age group. It also makes it easy to examine the equity distribution of any 
improvements to the transport system, easily identifying winners and losers from any 
policy. 

Major results 

Applications 

The 4S model has been applied to a number of Australian cities over the last 5 years, and 
initial applications have been done in London, Los Angeles and Denver. The model has also 
been used to analyze wider networks, including a detailed model of the whole of California, 
Australia and Great Britain. These larger models are particularly useful for analyzing 
freight demand, where many of the movements are interurban, but these are strongly 
impacted by urban congestion (since most road freight must travel through cities to reach 
major ports). 

The following figures show some broad results from the models. 

 

 

FIGURE 2: Volumes and accessibility in Denver 

 



 

FIGURE 3: Volumes and accessibility in California 

 



 

FIGURE 4: Volumes and accessibility in Great Britain 

It has been applied to a range of planning issues including: 

• Demand analysis for toll roads 



• Development of integrated regional strategy 

• Planning public transport network improvements 

• Regional freight analysis 

• Catchment analysis of parks, libraries, swimming pools and sports fields 

• Development of cycling strategy 

• Accessibility analysis for integrated land use/transport model 

The models have been calibrated using traditional maximum likelihood techniques where 
possible, with some parameter distributions taken from other studies. 

The structure of the model has been found to be very adaptable, and the models have 
calibrated well with relatively few parameters.  

Implications for the science and/or practice of travel modeling 

The 4S model is a complete redesign of transport modeling, moving away from many 
traditional elements such as traffic zones, centroid connectors, skim matrices and demand 
matrices. This significantly reduces the effort required to develop a new model, as most of 
the network creation can be done automatically. By distributing population and 
employment down to individual network nodes, the model can easily accept data from 
varying levels of detail, further simplifying model development and demographic 
forecasting. 

It uses Monte Carlo sampling to very efficiently model all aspects of demand 
simultaneously; route choice, mode choice, destination choice and trip choice are all done 
using a single utility maximizing formulation. This allows for taste variation, and deep 
behavioral variability that affects all aspects of choice. The efficiency of the model allows it 
to include fully detailed networks, with every road, pathway, and timetabled transit route. 
The model also allows key land use activities to be specified at their exact location, rather 
than at some amorphous point within a traffic zone. This can be done even for very large 
models, covering multiple cities, entire states or countries. 

This has the potential to extend the range of issues that can be modeled, and improve the 
realism of the analysis. The first-principles behavioral basis makes it particularly suitable 
to look at issues such as behavior change, autonomous vehicles, transit planning, and 
freight demand. The ability to model large areas but still maintain high levels of detail can 
remove some of the need for maintaining a hierarchy of models (statewide; strategic; 
mesoscopic). And finally the new approach opens up the possibility of very large models, 
such as the national model of Australia; and potentially detailed models of the entire US or 
Europe. With planned extensions of the software to run on a large network of cloud 
compute servers, it is even feasible to consider, for perhaps the first time, a single model of 
the whole world. 
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