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ABSTRACT

The flow-travefl time relationship, first proposed in 1966, has
been found to have alf the required characteristics of such a
relationship, however, beyond a loose association with
queueing theory, no adequate theoretical basis had been
found. This paper demonstrates that the relationship can be
derived from either of two queueing models, both of which
assume the road operates as a specific number of seguen-
tial queueing elements. In one mode! the delay parameter J
is the proportion of elfements which cause delay and in the
other it has a close association with the Erlang number. This
association is explored and comments on practical use of
the relationship are made.

INTRODUCTION

The author proposed in Davidson (1966) a flow travel
time relationship {Fig. 1) which has the form:
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where

vehicular flow rate
saturation flow rate

‘zero flow' travel time
travel time at flow rate Q
degree of saturation Q/S
a parameter.
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The relationship was generated from concepts of
queueing theory and where J= 1, T/t = 1/(1-c) is the
ratio of time in the system to service time under
steady-state conditions in a single channel facility with
a random arrival rate and exponentially distributed ser-
Vice rate.

For the simple system described above, the ratio
of delay in the queue to service time is ¢/(1-¢) but the
paper stated that

traffic on a road is not truly a single continuous gueueing
situation. Rather, delay on a road is caused by a succession of
queueing situations such that a varying amount of the total
service time is subject to queueing delays.
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PLANNING

The delay parameter, J was introduced to represent
this variation.

It has always been recognised that this was not a
rigorous derivation, but the relationship had all the
desirable shape characteristics of a flow-travel time
relationship and had the added advantage that the
delay parameter J allowed infinite variation to the
shape of the curve to thus provide for the individual
characteristics of ditferent roads.

The basic problem with any attempt at a rigorous
queueing derivation s that simple single-channel
queueing systems require that only one unit be in ser-
vice at any time, If a length of road is considered as a
queueing system then, clearly, more than one unit is in
service and the values of mean service time and the
reciprocal of mean service rate are different (mean
service time for a road is the time to travel over the
section when there are no delays caused by other
vehicles whilst mean service rate i1s the saturation fiow
rate), whereas in simple single channel queueing
systems these values are identical.

TWO NON-RIGOROUS MODELS

Perhaps some progress can be made if a system is
defined which equates these values. One way to do
this is to define a series of service facilities along the
road such that each facility has a mean service time
equal to the headway at saturation flow rate (i.e. the
reciprocal of mean service rate). If 1 /4 = mean service
time, then u = §, the saturation flow rate. If the section
of road requires time i to traverse in the absence of any
delays caused by other vehicles, then there are, by
definition, L service facilities in series, each with mean
service time 1/u so that
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MODEL 1

The original derivation of the model can, in terms of
this system, be more precisely stated if it is
considered that, of the L service facilities, only a pro-
portion J operate as such, and that they do so with a
random service time distribution. The remainder are
considered not to operate and contribute no queueing
delay at all, 1/u being the time to traverse each one.
The mean queueing delay at one facility, Wg, when
both arrival and service distributions are random is
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Wq = ¢
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If it is further assumed that the series operation of
these service elements does not disturb the random-
ness of the arrival pattern at any element, then

total queueing delay

N

T
¢4 1—c

(5)

since there are L elements and a proportion, J, of them
are operating. The total time to traverse the section of
road, T, is then the sum of queueing delay and the ser-
vice time in all of the elements:
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which corresponds to egn (1}. This model can thus be
used to generate the relationship.

MODEL 2

Alternatively, it is interesting to note that a single
channel, infinite gueue system with random arrivals and
an Erlang service distribution gives, according to
Blunden {1971}, p. 63 or Drew (1968) p. 250:

(9)

where K is the Erlang Number in the distribution (after
Blunden 1971, p. 51)
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This corresponds to the flow-travel time relationship if

J = 5K (15)
T = LW (16)
A (3)

f

In this case W is interpreted as the average time in
the system for each of the L elements, which, on
average, behave as though they each had random ar-
rivals and Ertang service. It cannot be said that each
element actually behaves in this way since the output
from each element, and hence the input to the next,
would tend to be Erlang rather than random. However,
as shown in Blunden {(1971) p. 64, delay charac-
teristics of a system with Erlang distributions in either
the arrival pattern or the service pattern or both are
very similar and could be at least well approximated to
by a delay curve for a system with random arrivals and
Erlang service where the Erlang number was properly
selected. Hence, defining an Erlang number which
represents the average service behaviour of each of
the L elements when random arrivals are assumed is
not likely to lead to an erroneous shape for the delay
curve. Again, this does not constitute a strict deriva-
tion of the relationship but it is suggested as a
reasonable model.

SUMMARY

The relationship can thus be derived from one of two
alternative concepts. In one case it is assumed that a
proportion Jof L potential queueing-system elements
in the section of road are operating as delay-produc-
ing elements and that they do so with random arrivals
and service. In the other case, all L elements operate,
and on average they behave as though they were
single-channel infinite-queue systems each with ran-
dom arrivals and Erlang service, with the Erlang num-
ber being such that J = (K + 1)/2K.

RELATIONSHIP BETWEEN DELAY
PARAMETER AND ERLANG NUMBER

With the second interpretation, Jis directly reiated to
the Erlang number of the service distribution

K+ 1 (15)

Thus, if J = 1 then K = 1 and this corresponds to a
single-channel infinite-queueing case with random
arrivals and exponential service. If J = 0.5, K = oo,
corresponding to regular service which results in ex-
actly half the delay of the expanential {random) service
case. {(Note in Fig. 7that T — t for J = 0.5 is half the
value of T — twhen J= 1))

33



DAVIDSON — THEORETICAL BASIS OF FLOW-TRAVEL TIME RELATIONSHIP

T _1—C[1—-JI'
2.0k ¢ 1.-C
4.0 -
3.0 -
T
1
2.0
/‘"’f
..-""'.J-’...'f
1.0 éﬁ

01 02 02 04 05 06 0.7 0.8 09 1.0

Q
S-C

Fig. 1 —Proposed flow-travel time relationship showing a range of values
of the delay parameter (J)

However, if the service distribution goes from ex-
ponential {random) to regular as J goes from 1 to 0.5
(K goes from 1 to o0), what interpretation can be
placed on values of Jof less than 0.57 Fig. 2shows the
relationship between Jand K for the whole range of J
values, At J = 0.5 there is a discontinuity with K going
from oo t0 — o0 and as J— 0, K— —1.

It is suggested that this has a fairly obvious physi-
cal interpretation. In the analysis, it is assumed that the
arrival distribution is random; the delay is halved if the
service rate goes from random to regular. If the arrival
distribution remains random, the only way that delay
can be further reduced is if the service distribution in-
creasingly mirrors the arrival distribution. If the service
distribution was exactly the same as the arrival dis-
tribution then there should be no delay at all until
saturation flow was reached (as, tor example, shown
by Blunden (1971) on p. 65 for constant arrivals and
constant service). This situation is reached when J= 0
(K = —1) and in this case the service distribution must

exactly match the arrival distribution, that is, it must be
random when looked at in isolation but exactly match-
ing the arrival distribution when both distributions are
seen together. K = —1 may therefore be thought of as
representing a ‘matched’ random distribution and as
the negative values of K approach — oo the ‘matched’
randomness approaches regularity in exactly the same
way as the corresponding positive values of K go from
normal randomness to regularity,

This form of operation is quite feasible in a road
traffic situation. Its only application in a real gqueueing
situation would occur if a server was truly Parkinso-
nian (‘the work expands to fill the time available’ — a
propasition in ‘Parkinson's Law’), i.e. if his rate of ser-
vice depended upon the pressure of customers.

APPLICATIONS

The principal advantage of the relationship is that the
delay parameter J may be regarded as a characteristic
of the road or type of road so that each road type can
have a different relationship between flow and delay at
the same degree of saturation.

It must be remembered, however, that the relation-
ship is derived from simple queueing theory and that a
basic assumption is therefore that steady-state condi-
tions exist. This is plainly not true in most traffic situa-
tions and the result is that delays are somewhat less
than they would be if a steady state existed. Further-
maore, in seeking to calibrate the parameters, measure-
ment of the whole of the delay associated with the
facility must be attempted — it may be quite easy
otherwise to be measuring only service time.

Because of the above effects, a calibration using
real data will tend to vield a saturation flow rate which
Is higher than known absolute capacity. The higher the
value of Jand the shorter the duration of steady-state
conditions (e.g. the shorter the peak period) the more
this will be s0. It is suggested therefore that the func-
tion be arbitrarily cut off at a flow rate somewhat less
than S, depending, as indicated above, on the value of J
and the duration of the peak. To do so would also
eliminate the potential modelling embarrassment of in-
finite travel time.
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Fig. 2 — Relationship between delay parameter J and the Erlang number K
of the service distribution
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CONCLUSION developing the idea of a service facility which has a

distribution which, to varying degrees, is ‘matched 1o

(he flow-travel time relationship developed in David- the arrival distribution, positive and negative Erlang

son (1966) is firmly based on queueing theory, and the numbers of the same absolute value can be shown to

delay parameter J is closely related to the Erlang reflect the same degree of randomness. Such a con-

number of the service distribution. Useful values of J cept is clearly realistic in traffic modelling and it may
correspond to negative Erlang numbers, but by have applications in other queueing systems.
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